Quantity	Symbol	Unit	Symbol
Acceleration	а	metres per second squared	m/s ²
Activity	А	becquerel	Bq
Area	А	metres squared	m²
Change in	Δ (delta)	-	-
Charge	Q	coulombs	С
Current	Ι	amps	А
Density	ρ (rho)	kilograms per cubic metre	kg/m³
Distance or displacement	S	metres	m
Efficiency	-	percentage	%
Elastic potential energy	Ee	joules	J
Energy	Е	joules	J
Extension	e	metres	m
Final velocity	V	metres per second	m/s
Force (resultant force)	F	newtons	Ν
Frequency	f	hertz	Hz
Gravitational field strength	g	newtons per kilogram	N/kg
Gravitational potential energy	Ep	joules	J
Height	h	metres	m
Initial velocity	U	metres per second	m/s
Kinetic energy	Eĸ	joules	J
Magnetic flux density	В	tesla	Т
Magnification	М	-	-
Mass	m	kilograms	kg
Moment	М	newton metres	Nm
Momentum	p	kilogram metres per second squared	kg m/s²
Number of turns	n	-	-
Potential difference	V	volts	V
Power	Р	watts	W
Pressure	p	pascals	Pa

, south

Radiation dose	-	sieverts	Sv
Resistance	R	ohms	Ω (omega)
Specific heat capacity	С	joules per kilogram per degree Celcius	J/kg °C
Specific latent heat	L	joules per kilogram	J/kg
Speed	V	metres per second	m/s
Spring constant	k	newtons per metre	N/m
Temperature	θ (theta)	degrees Celsius	°C
Thermal energy	E	joules	J
Time	t	seconds	S
Velocity	V	metres per second	m/s
Volume	V	metres cubed	m ³
Wave speed	V	metres per second	m/s
Wavelength	λ (lambda)	metres	m
Weight	W	kilograms	kg
Work done	W	joules	J

m

	Equation	Symbol
	kinetic energy = ½ x mass x speed ²	$E_k = \frac{1}{2} \text{ m } v^2$
Equation Sheet	elastic potential = ½ x spring constant x extension ² energy	$E_{e} = \frac{1}{2} k e^{2}$
	gravitational potential _{= mass x} gravitational field _{x height} energy strength	E _p = m g h
Equation Sheet	change in thermal = mass x specific heat x change in energy capacity temperature	ΔE = m c Δθ
	power = energy transferred / time	P = E / t
	power = work done / time	P = W / t
	efficiency = total input energy transfer	-
	efficiency = 	-
	charge = current x time	Q = I t
	potential difference = current x resistance	V = I R
	resistors in series: total resistance = sum of individual resistances	$R_{Total} = R_1 + R_2$
	power = potential difference x current	$P = \bigvee I$
	power = current ² x resistance	$P = I^2 R$
	energy transferred = power x time	E = P †
	energy transferred = charge x potential difference	E = Q V
	density = mass / volume	ρ = m / V
Equation Sheet	energy for a change of state = mass x specific latent heat	E = m L
Equation Sheet	For a fixed mass of gas at constant temperature: pressure x volume = constant	p V = constant
	weight = mass x gravitational field strength	W = m g
	work done = force x distance (moved along the line of action of the force)	W = F s

	force = spring constant x extension	F = k e
	moment of a force = force x distance (perpendicular from the pivot to the line of action of the force)	M = F d
	pressure = force normal to a surface / area	p = F / A
Higher Equation Sheet	pressure = height x density of x gravitational field liquid strength	p=hpg
	distance travelled = speed x time	s = v t
	acceleration = change in velocity / time taken	$a = \Delta v / t$
Equation Sheet	final velocity ² – initial velocity ² = $2 \times \text{acceleration} \times \text{distance}$	$v^2 - u^2 = 2 a s$
	resultant force = mass x acceleration	F = m a
Higher	momentum = mass x velocity	p = m y
		1 •
Higher Equation Sheet	force = change of momentum / time taken	$F = m \Delta v / \Delta t$
Higher Equation Sheet Equation Sheet	force = change of momentum / time taken period = 1 / frequency	$F = m \Delta v / \Delta t$ $T = 1 / f$
Higher Equation Sheet Equation Sheet	force = change of momentum / time taken period = 1 / frequency wave speed = frequency x wavelength	$F = m \Delta v / \Delta t$ $T = 1 / f$ $v = f \lambda$
Higher Equation Sheet Equation Sheet Equation Sheet	force = change of momentum / time taken period = 1 / frequency wave speed = frequency x wavelength magnification = image height / object height	$F = m \Delta v / \Delta t$ $T = 1 / f$ $v = f \lambda$
Higher Equation Sheet Equation Sheet Equation Sheet Higher Equation Sheet	force = change of momentum / time taken period = 1 / frequency wave speed = frequency x wavelength magnification = image height / object height For a conductor at right angles to a magnetic field carrying a current: force = magnetic flux density x current x length	$F = m \Delta v / \Delta t$ $T = 1 / f$ $v = f \lambda$ $F = B I 1$
Higher Equation Sheet Equation Sheet Equation Sheet Higher Equation Sheet	force = change of momentum / time taken period = 1 / frequency wave speed = frequency x wavelength magnification = image height / object height For a conductor at right angles to a magnetic field carrying a current: force = magnetic flux density x current x length potential difference across the primary coil potential difference across the secondary coil = number of turns in primary number of turns in secondary	$F = m \Delta v / \Delta t$ $T = 1 / f$ $v = f \lambda$ $F = B I l$ $V_p / V_s = n_p / n_s$

Soort

Quantities	Word Equation	Symbol Equation	Correct
kinetic energy mass speed			
change in temperature energy mass specific heat capacity			
power time work done			
current potential difference resistance			
current potential difference power			
density mass volume			
distance work done force			
area force normal to a surface pressure			
acceleration force resultant force			
frequency wavelength wave speed			

m

Quantities	Word Equation	Symbol Equation	Correct
area force normal to a surface pressure			
change in temperature energy mass specific heat capacity			
kinetic energy mass speed			
current potential difference resistance			
current potential difference power			
frequency wavelength wave speed			
extension force spring constant			
acceleration change in velocity time taken			
mass momentum velocity			
current force length magnetic flux density			

), mark

Quantities	Word Equation	Symbol Equation	Correct
current potential difference resistance			
current potential difference power			
extension force spring constant			
image height magnification object height			
distance force moment			
gravitational field strength mass weight			
constant pressure volume			
acceleration change in velocity time taken			
mass momentum velocity			
current force length magnetic flux density			

Ł

Quantities	Word Equation	Symbol Equation	Correct
area force normal to a surface pressure			
efficiency useful power output total power input			
current power resistance			
acceleration change in velocity time taken			
frequency wavelength wave speed			
image height magnification object height			
constant pressure volume			
current force length magnetic flux density			
change in momentum force time taken			
primary pd primary current secondary pd secondary current			

), mark

Quantities	Word Equation	Symbol Equation	Correct
energy for a change of state mass specific latent heat			
charge energy transferred potential difference			
charge current time			
efficiency total input energy transfer useful output energy transfer			
frequency period			
acceleration distance initial velocity final velocity			
current power resistance			
primary pd primary current secondary pd secondary current			
change in momentum force time taken			
density of liquid gravitational field strength height pressure			

m

Quantities	Word Equation	Symbol Equation	Correct
acceleration distance initial velocity final velocity			
acceleration change in velocity time taken			
charge energy transferred potential difference			
image height magnification object height			
constant pressure volume			
gravitational field strength mass weight			
current potential difference resistance			
density of liquid gravitational field strength height pressure			
current force length magnetic flux density			
change in momentum force time taken			

Soort

Quantities	Word Equation	Symbol Equation	Correct
elastic potential energy extension spring constant			
change in temperature energy mass specific heat capacity			
gravitational field strength gravitational potential energy height mass			
kinetic energy mass speed			
efficiency total input energy transfer useful output energy transfer			
frequency wavelength wave speed			
extension force spring constant			
change in momentum force time taken			
primary pd primary number of turns secondary pd secondary number of turns			
primary pd primary current secondary pd secondary current			

Zoor

Quantities	Word Equation	Symbol Equation	Correct
efficiency total input energy transfer useful output energy transfer			
change in temperature energy mass specific heat capacity			
acceleration change in velocity time taken			
density mass volume			
distance work done force			
area force normal to a surface pressure			
change in momentum force time taken			
primary pd primary number of turns secondary pd secondary number of turns			
mass momentum velocity			
current force length magnetic flux density			

Zunk